901 research outputs found

    Inducing topological order in a honeycomb lattice

    Get PDF
    We explore the possibility of inducing a topological insulator phase in a honeycomb lattice lacking spin-orbit interaction using a metallic (or Fermi gas) environment. The lattice and the metallic environment interact through a density-density interaction without particle tunneling, and integrating out the metallic environment produces a honeycomb sheet with in-plane oscillating long-ranged interactions. We find the ground state of the interacting system in a variational mean-field method and show that the Fermi wave vector, kF, of the metal determines which phase occurs in the honeycomb lattice sheet. This is analogous to the Ruderman-Kittel-Kasuya-Yosida (RKKY) mechanism in which the metal's kF determines the interaction profile as a function of the distance. Tuning kF and the interaction strength may lead to a variety of ordered phases, including a topological insulator and anomalous quantum-hall states with complex next-nearest-neighbor hopping, as in the Haldane and the Kane-Mele model. We estimate the required range of parameters needed for the topological state and find that the Fermi vector of the metallic gate should be of the order of 3Pi/8a (with a being the graphene lattice constant). The net coupling between the layers, which includes screening in the metal, should be of the order of the honeycomb lattice bandwidth. This configuration should be most easily realized in a cold-atoms setting with two interacting Fermionic species.Comment: 7 pages; 2 figures; Version 2 - added references; added an appendix about screenin

    Parallels between the dynamics at the noise-perturbed onset of chaos in logistic maps and the dynamics of glass formation

    Full text link
    We develop the characterization of the dynamics at the noise-perturbed edge of chaos in logistic maps in terms of the quantities normally used to describe glassy properties in structural glass formers. Following the recognition [Phys. Lett. \textbf{A 328}, 467 (2004)] that the dynamics at this critical attractor exhibits analogies with that observed in thermal systems close to vitrification, we determine the modifications that take place with decreasing noise amplitude in ensemble and time averaged correlations and in diffusivity. We corroborate explicitly the occurrence of two-step relaxation, aging with its characteristic scaling property, and subdiffusion and arrest for this system. We also discuss features that appear to be specific of the map.Comment: Revised version with substantial improvements. Revtex, 8 pages, 11 figure

    Continuous thermal melting of a two-dimensional Abrikosov vortex solid

    Full text link
    We examine the question of thermal melting of the triangular Abrikosov vortex solid in two-dimensional superconductors or neutral superfluids. We introduce a model, which combines lowest Landau level (LLL) projection with the magnetic Wannier basis to represent degenerate eigenstates in the LLL. Solving the model numerically via large-scale Monte Carlo simulations, we find clear evidence for a continuous melting transition, in perfect agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young theory and with recent experiments.Comment: 4 pages, 2 figures; published versio

    Phase coherence and the Nernst effect at magic angles in organic conductors

    Full text link
    A giant Nernst signal was recently observed for fields near crystallographic directions in (TMTSF)2_2PF6_6. Such large Nernst signals are most naturally associated with the motion of pancake vortices. We propose a model in which phase coherence is destroyed throughout the sample except in planes closely aligned with the applied field H\bf H. A small tilt above or below the plane changes the direction and density of the penetrating vortices and leads to a Nernst signal that varies with the tilt angle of H\bf H as observed. The resistance notches at magic angles are understood in terms of flux-flow dissipation from field-induced vortices.Comment: 4 pages, 4 figure

    Topological defects in flat nanomagnets: the magnetostatic limit

    Get PDF
    We discuss elementary topological defects in soft magnetic nanoparticles in the thin-film geometry. In the limit dominated by magnetostatic forces the low-energy defects are vortices (winding number n = +1), cross ties (n = -1), and edge defects with n = -1/2. We obtain topological constraints on the possible composition of domain walls. The simplest domain wall in this regime is composed of two -1/2 edge defects and a vortex, in accordance with observations and numerics.Comment: 3 pages, eps figures. Proceedings of MMM 0

    Lateral and normal forces between patterned substrates induced by nematic fluctuations

    Full text link
    We consider a nematic liquid crystal confined by two parallel flat substrates whose anchoring conditions vary periodically in one lateral direction. Within the Gaussian approximation, we study the effective forces between the patterned substrates induced by the thermal fluctuations of the nematic director. The shear force oscillates as function of the lateral shift between the patterns on the lower and the upper substrates. We compare the strength of this fluctuation-induced lateral force with the lateral van der Waals force arising from chemically structured adsorbed monolayers. The fluctuation-induced force in normal direction is either repulsive or attractive, depending on the model parameters.Comment: 9 pages, 9 figure

    Accurate simulation estimates of cloud points of polydisperse fluids

    Full text link
    We describe two distinct approaches to obtaining cloud point densities and coexistence properties of polydisperse fluid mixtures by Monte Carlo simulation within the grand canonical ensemble. The first method determines the chemical potential distribution μ(σ)\mu(\sigma) (with σ\sigma the polydisperse attribute) under the constraint that the ensemble average of the particle density distribution ρ(σ)\rho(\sigma) matches a prescribed parent form. Within the region of phase coexistence (delineated by the cloud curve) this leads to a distribution of the fluctuating overall particle density n, p(n), that necessarily has unequal peak weights in order to satisfy a generalized lever rule. A theoretical analysis shows that as a consequence, finite-size corrections to estimates of coexistence properties are power laws in the system size. The second method assigns μ(σ)\mu(\sigma) such that an equal peak weight criterion is satisfied for p(n)forallpointswithinthecoexistenceregion.However,sinceequalvolumesofthecoexistingphasescannotsatisfytheleverrulefortheprescribedparent,theirrelativecontributionsmustbeweightedappropriatelywhendetermining for all points within the coexistence region. However, since equal volumes of the coexisting phases cannot satisfy the lever rule for the prescribed parent, their relative contributions must be weighted appropriately when determining \mu(\sigma)$. We show how to ascertain the requisite weight factor operationally. A theoretical analysis of the second method suggests that it leads to finite-size corrections to estimates of coexistence properties which are {\em exponentially small} in the system size. The scaling predictions for both methods are tested via Monte Carlo simulations of a novel polydisperse lattice gas model near its cloud curve, the results showing excellent quantitative agreement with the theory.Comment: 8 pages, 6 figure

    Quantum Lifshitz point in the infinite dimensional Hubbard model

    Full text link
    We show that the Gutzwiller variational wave function is surprisingly accurate for the computation of magnetic phase boundaries in the infinite dimensional Hubbard model. This allows us to substantially extend known phase diagrams. For both the half-hypercubic and the hypercubic lattice a large part of the phase diagram is occupied by an incommensurate phase, intermediate between the ferromagnetic and the paramagnetic phase. In case of the hypercubic lattice the three phases join at a new quantum Lifshitz point at which the order parameter is critical and the stiffness vanishes.Comment: 4 pages, 3 figure

    Non-universal dynamics of dimer growing interfaces

    Full text link
    A finite temperature version of body-centered solid-on-solid growth models involving attachment and detachment of dimers is discussed in 1+1 dimensions. The dynamic exponent of the growing interface is studied numerically via the spectrum gap of the underlying evolution operator. The finite size scaling of the latter is found to be affected by a standard surface tension term on which the growth rates depend. This non-universal aspect is also corroborated by the growth behavior observed in large scale simulations. By contrast, the roughening exponent remains robust over wide temperature ranges.Comment: 11 pages, 7 figures. v2 with some slight correction

    Asymmetry between the electron- and hole-doped Mott transition in the periodic Anderson model

    Full text link
    We study the doping driven Mott metal-insulator transition (MIT) in the periodic Anderson model set in the Mott-Hubbard regime. A striking asymmetry for electron or hole driven transitions is found. The electron doped MIT at larger U is similar to the one found in the single band Hubbard model, with a first order character due to coexistence of solutions. The hole doped MIT, in contrast, is second order and can be described as the delocalization of Zhang-Rice singlets.Comment: 18 pages, 19 figure
    corecore